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Abstract

Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well

established. Implementation of conditional phase-shift gate has been a significant step, which has lead to realization of important

algorithms such as Grover�s search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by
using coupling evolution method. We demonstrate here the implementation of the conditional phase-shift gate using transition

selective pulses. As an application of the gate, we demonstrate Grover�s search algorithm and quantum Fourier transform by

simulations and experiments using transition selective pulses.

� 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Theoretical possibility of quantum information pro-

cessing (QIP) has generated a lot of enthusiasm for its

experimental realization [1–8]. Nuclear magnetic reso-

nance (NMR) has played a leading role for practical
demonstration of quantum algorithms and quantum

gates [10–32]. Deutsch-Jozsa algorithm [9–12], Grover�s
search algorithm [13–15], quantum Fourier transform

[16], and the Shor�s factorization algorithm [17] have

been implemented by liquid-state NMR. The unitary

operators needed for implementation of these algo-

rithms by NMR, have mostly been realized using spin

selective radio frequency (r.f.) pulses and coupling evo-
lution, utilizing indirect spin–spin (J) or dipolar cou-

plings among the spins. On the other hand, several logic

gates and algorithms have also been implemented using

transition selective (soft; low power, long duration) r.f.

pulses [10,11,20,26,29]. The use of transition selective

pulses in quantum information processing is popular

for its simplicity of logical operations. For example, a

C2-NOT gate in a three-qubit system using coupling

evolution, requires a series of spin (qubit) selective p=2
and p pulses interspaced with J-evolutions on all three
qubits, cascading a series of unitary transforms, while

the same gate needs a single transition selective p pulse
[10].
Conditional phase-shift gate is an integral part of

many algorithms such as Grover�s search algorithm and
quantum Fourier transform (QFT) [6]. This gate intro-

duces a phase-shift only if a certain condition is fulfilled.

This gate has been realized using J-evolution by earlier

workers [13,15,16]. In this work, we construct condi-

tional phase-shift gate using transition selective pulses.

As an application, we demonstrate Grover�s search al-
gorithm and quantum Fourier transform in a three-qu-

bit system by simulations, and Grover�s search

algorithm in a two-qubit system by experiments, using

transition selective pulses.

It may be mentioned that while theoretically the

transition selective pulses are attractive since they sim-

plify the logic of an operation, their experimental im-

plementation requires long low power r.f. pulses, which
give rise to experimental errors due to relaxation and

unwanted evolution under the internal Hamiltonian

during long pulses [31]. However, the transition selective
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pulse method has yielded experimental results with fi-
delity comparable to J-evolution method [19]. Recently,

use of transition selective pulses for quadrupolar nuclei

of spin 3/2 and 7/2 partially oriented in liquid crystal

matrices, respectively, as two- and three-qubit systems

has been demonstrated [25–27]. Transition selective

pulses have also been used to demonstrate the use of

oriented dipolar coupled CH3 and
13CH3 groups as two

and three qubits, respectively, and work is in progress to
use transition selective pulses for quantum information

processing in strongly coupled spins [28–30]. In all these

cases, the J-evolution method is either not applicable or

too complex to implement [32]. In such situations, the

use of transition selective pulses method, inspite of its

experimental limitations, provides an attractive alter-

native. It is conceivable that in future the two methods

could be combined in order to increase the efficiency or
for finding alternate routes for QIP.

2. The conditional phase-shift gate

The conditional phase-shift gate introduces a phase-

shift only if a predetermined condition is satisfied. In

one-qubit system, the conditional phase-shift gate is an
unitary transform of the form [8]:

C1ð/Þ ¼
1 0

0 ei/

� �
or C0ð/Þ ¼ ei/ 0

0 1

� �
: ð1Þ

The C1ð/Þ introduces a phase-shift if the qubit is in state
j1i and C0ð/Þ introduces a phase-shift if the qubit is in
state j0i. However, these two operations are identical
within an overall phase, since C0ð/Þ ¼ ei/C1ð�/Þ. The
phase-shift gate can be realized experimentally by a ro-

tation of the magnetization vector of a spin-1/2 nucleus

(qubit) by angle / about z-axis (z-rotation). A / angle
pulse about z-axis has the form

ð/Þz ¼ expð�i/rz=2Þ ¼ e�i/=2 0

0 ei/=2

� �
; ð2Þ

where rz is Pauli�s z-matrix. We note that the phase gate

C1ð/Þ can be achieved using ð/Þz, since
C1ð/Þ ¼ ei/=2ð/Þz: ð3Þ
A / angle pulse about z-axis can be experimentally real-

ized by a composite pulse of the form ð/Þz ¼ ðp=2Þyð/Þx
ðp=2Þ�y , where ð/Þy means a rotation of magnetization
vector by an angle ð/Þ about y-axis. This pulse sequence in
widely known in NMR as a composite z-pulse [33,34].
In a two-qubit system, there are four possible con-

ditional phase-shift gates (C00ð/Þ; C01ð/Þ; C10ð/Þ, and
C11ð/Þ). A C11ð/Þ gate introduces a phase-shift of /
only if both the qubits are j1i, whereas a C10ð/Þ gate
does the same only if first qubit is j1i and second qubit is
j0i. Similar logic holds for the other two gates. The
unitary operator corresponding to C11ð/Þ is

C11ð/Þ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei/

0
BB@

1
CCA: ð4Þ

This gate has been implemented earlier using J-coupling
evolution and spin selective pulses [16]. Here, we dem-

onstrate that C11ð/Þ can also be constructed using

transition selective z-pulses. For this purpose, we first

describe phase rotation of a qubit. The unitary operator

describing a rotation of angle / about z-axis on the first

qubit, when the second qubit is in state j0i has the form

ð/Þz0 ¼ exp
�
� i/ 1

2
rð1Þ
z

�
� rð2Þ

0

��

¼
e�i/=2 0 0 0

0 1 0 0

0 0 ei/=2 0

0 0 0 1

0
BB@

1
CCA: ð5Þ

This is a transition-selective phase rotation by angle /
about z-axis. rð2Þ

0 is the polarization operator of the

second qubit corresponding to the state j0i. The polar-
ization operators of jth qubit when it is in state j0i or j1i
are

rðjÞ
0 ¼ j0ih0j ¼

1 0

0 0

� �
;

rðjÞ
1 ¼ j1ih1j ¼

0 0

0 1

� �
;

ð6Þ

respectively [34]. Similarly a / angle pulse about z-axis
on the first qubit when the second qubit is in state j1i
has the matrix form

ð/Þz1 ¼ exp
�
� i/ 1

2
rð1Þ
z

�
� rð2Þ

1

��

¼

1 0 0 0

0 e�i/=2 0 0
0 0 1 0

0 0 0 ei/=2

0
BB@

1
CCA: ð7Þ

The / angle z-rotation of second qubit when the first

qubit is, respectively, in the state j0i and j1i are

ð/Þ0z ¼ exp
�
� i/ rð1Þ

0

�
� 1
2
rð2Þ
z

��

¼
e�i/=2 0 0 0

0 ei/=2 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA; ð8Þ

ð/Þ1z ¼ exp
�
� i/ rð1Þ

1

�
� 1
2
rð2Þ
z

��

¼

1 0 0 0

0 1 0 0

0 0 e�i/=2 0

0 0 0 ei/=2

0
BB@

1
CCA: ð9Þ
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The conditional phase-shift gate C11ð/Þ can now be re-
alized by the sequence of z-rotations, ½ð/=2Þz0ð/=2Þz1

½ð/Þ1z
 with an overall phase of e�i/=4, as

C11ð/Þ ¼ ½ð/=2Þz0ð/=2Þz1
½ð/Þ1z


¼ e�i/=4
1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 ei/

0
BB@

1
CCA: ð10Þ

The C11ð/Þ gate is also termed as Controlled phase-shift
gate [8]. Similarly, the other conditional phase gates in

the two-qubit system can be achieved within an overall

phase of e�i/=4 by the pulse sequences

C10ð/Þ ¼ ½ð/=2Þz0ð/=2Þz1
½ð/Þ0ð�zÞ
; ð11Þ
C01ð/Þ ¼ ½ð/=2Þð�zÞ0ð/=2Þð�zÞ1
½ð/Þ1z
; ð12Þ
C00ð/Þ ¼ ½ð/=2Þð�zÞ0ð/=2Þð�zÞ1
½ð/Þ0ð�zÞ
: ð13Þ

The pulses in the first bracket are transition selective

pulses on the transitions of first qubit, while the second

bracket has a transition selective pulse on a transition of

second qubit. Each pulse about z-axis is experimentally

realized by transition selective composite z-pulses. In a

three-qubit system, there are eight conditional phase-

shift gates (C000ð/Þ;C001ð/Þ; . . . ;C111ð/Þ). The C111ð/Þ
gate introduces a phase-shift of / when all the three

qubits are in state j1i and does nothing otherwise. The
unitary operator of the C111ð/Þ gate is

C111ð/Þ ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 ei/

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð14Þ

With the same logic as applied to one- and two-qubit

systems, we realize the phase-shift gate C111ð/Þ (with an
overall phase factor of e�i/=8) by a sequence of transition

selective z-pulses,

C111ð/Þ ¼ ½ð/=4Þz00ð/=4Þz01ð/=4Þz10ð/=4Þz11

� ½ð/=2Þ1z0ð/=2Þ1z1
½ð/Þ11z
: ð15Þ

The pulses in the first bracket are on first qubit, second
bracket on second qubit and third bracket on third

qubit. The other phase-shift gates can be achieved by the

same number of transition selective z-rotations, with

different pulses on transitions of second and third qu-

bits. For example two other phase gates C000ð/Þ and
C110ð/Þ, which will be used later for demonstration of
Grover�s search algorithm, are

C110ð/Þ ¼ ½ð/=4Þz00ð/=4Þz01ð/=4Þz10ð/=4Þz11

� ½ð/=2Þ1z0ð/=2Þ1z1
½ð/Þ11ð�zÞ
; ð16Þ

C000ð/Þ ¼ ½ð/=4Þð�zÞ00ð/=4Þð�zÞ01ð/=4Þð�zÞ10ð/=4Þð�zÞ11

� ½ð/=2Þ0ð�zÞ0ð/=2Þ0ð�zÞ1
½ð/Þ00ð�zÞ
: ð17Þ

Like C111ð/Þ case, these pulse sequences also have an
overall phase of e�i/=8.

The above sequences can be easily generalized into a

single formula to build an N-qubit conditional phase-

shift gate Cijk���mnð/Þ (where the N-qubits are

i; j; k; . . . ;m; n¼ 0 or 1), as given below

Cijk���mnð/Þ ¼
Y2N�1

j0k0 ���m0n0

/
2N�1

� �
fð�1Þiþ1zgj0k0 ���m0n0

2
4

3
5

�
Y2N�2

k0 ���m0n0

/
2N�2

� �
ifð�1Þjþ1zgk0 ���m0n0

" #
� � �

Y2
n0

/
2

� �
ijk���fð�1Þmþ1zgn0

" #
ð/Þijk���mfð�1Þnþ1gz
h i

;

ð18Þ

where j0; k0; . . . ;m0; n0 ¼ 0 or 1. It is to be noted that the
above Eqs. (10)–(18) are not unique. The smallest angle

pulse (/=2ðN�1Þ) need not be applied only on the first

qubit but can be applied on any qubit. Similarly pulse
(/=2ðN�2Þ) can be applied on any qubit other than on the

qubit on which (/=2ðN�1Þ) is applied. Hence, different

combinations of transition selective z-pulses can create

the same gate, but in all pulse sequences the logic of

Eq. (18) is maintained. For example, the C111ð/Þ given in
Eq. (15) can also be created by different pulse sequences

such as

C111ð/Þ ¼ ½ð/=4Þ0z0ð/=4Þ1z0ð/=4Þ0z1ð/=4Þ1z1

� ½ð/=2Þz10ð/=2Þz11
½ð/Þ11z


¼ ½ð/=4Þ00zð/=4Þ10zð/=4Þ01zð/=4Þ11z

� ½ð/=2Þ0z1ð/=2Þ1z1
½ð/Þz11


¼ ½ð/=4Þ00zð/=4Þ10zð/=4Þ01zð/=4Þ11z

� ½ð/=2Þz01ð/=2Þz11
½ð/Þ1z1
: ð19Þ

However, all the sequences require the same number of

pulses.

For quantum Fourier transform in a three-qubit

system, a reduced conditional phase-shift gate is re-

quired where the condition is on two qubits and there is

no condition on the third qubit. For example, C11�ð/Þ
gate acts according to the states of first and second

qubits and introduces a phase-shift only if both the
qubits are in state j1i (shown by subscript), and is in-
dependent of the state of the third qubit which can be in

state j0i or j1i (�¼ 0 or 1). The unitary operator of
C11�ð/Þ gate is
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C11�ð/Þ ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 ei/ 0

0 0 0 0 0 0 0 ei/

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð20Þ

The pulse sequences of the reduced conditional phase-

shift gate can be easily constructed from the pulse
sequences of the conditional phase-shift gates. For

example,

C11�ð/Þ ¼ C111ð/ÞC110ð/Þ: ð21Þ

Using Eqs. (15), (16) and (21), this gate can be realized

(with an overall phase of e�i/=4) by a sequence of tran-

sition selective z-pulses

C11�ð/Þ ¼ ½ð/=4Þz00ð/=4Þz01ð/=4Þz10ð/=4Þz11

� ½ð/=2Þ1z0ð/=2Þ1z1
½ð/Þ11z

� ½ð/=4Þz00ð/=4Þz01ð/=4Þz10ð/=4Þz11

� ½ð/=2Þ1z0ð/=2Þ1z1
½ð/Þ11ð�zÞ
: ð22Þ

Since all z-pulses commute Eq. (22) reduces to:

C11�ð/Þ ¼ ½ð/=4Þz00ð/=4Þz01ð/=4Þz10ð/=4Þz11

2

� ½ð/=2Þ1z0ð/=2Þ1z1

2½ð/Þ11zð/Þ11ð�zÞ
: ð23Þ

The last two pulses cancel and the squares of exponen-

tial operators double the angle of rotation, yielding,

C11�ð/Þ ¼ ½ð/=2Þz00ð/=2Þz01ð/=2Þz10ð/=2Þz11
½ð/Þ1z0ð/Þ1z1
:
ð24Þ

This reduced gate requires one z-pulse less than C111ð/Þ
or C110ð/Þ gate. Other reduced conditional phase-shift
gates can also be similarly realized (with an overall
phase of e�i/=4) as:

C1�1ð/Þ ¼ ½ð/=2Þz00ð/=2Þz01ð/=2Þz10ð/=2Þz11
½ð/Þ10zð/Þ11z
;
ð25Þ

C�11ð/Þ ¼ ½ð/=2Þz00ð/=2Þz01ð/=2Þz10ð/=2Þz11
½ð/Þ01zð/Þ11z
:
ð26Þ

Thus, these gates can also be realized by transition

selective pulses. One can extend the composite tran-

sition selective z-pulse sequence to construct a �m�-
qubit conditional phase gate in any �N�-qubit system
(with an overall phase of eð�i/=2

mÞ). For such a gate,

the number of transition selective z-pulse required are

(2N � 2N�m). The number of pulses decreases as the

number of conditional qubits �m� decrease. Each

transition selective z-pulse is experimentally realized
by three transition selective r.f. pulses along x and y-

axis [35]. As an example the z-pulse on one of the

transitions of third qubit in a N-qubit system can be

realized as

ð/Þijzl���n ¼ ðp=2Þijyl���nð/Þijxl���nðp=2Þij�yl���n; ð27Þ

where i; j; l; . . . ; n¼ 0 or 1.
It may be mentioned that for all the gates described

above (Eqs. (10)–(27)) the first set of 2N�1 transition
selective z-pulses act on all transitions of a spin (qu-

bit), and wherever possible (in weakly coupled spin-1/2

systems), can be experimentally implemented by using

a spin (qubit) selective z-pulse, thus reducing the

number of transition selective pulses by 2N�1 pulses.
For example, the C11� type gates (Eqs. (24)–(26)) re-
quire one spin selective and two transition selective

pulses.

3. Simulations

3.1. Grover’s search algorithm

Grover�s search algorithm can search (with high

probability) any state of an N-qubit system in Oð
ffiffiffiffiffiffi
2N

p
Þ

iterations [5]. Each iteration has two steps, namely

�conditional sign-flip� and �inversion about average.�
These can be implemented by using the conditional

phase-shift gate. We demonstrate here the implemen-

tation of Grover�s search algorithm by simulation using
transition selective pulses on a three-qubit system. In a
three-qubit system, the algorithm requires two itera-

tions. The algorithm starts with an initial pseudo-pure

state, say j000i. A Hadamard gate �H� is applied on
this state. The Hadamard gate rotates each qubit from

j0i state to an uniform superposition ðj0i þ j1iÞ=
ffiffiffi
2

p
.

The unitary transform of Hadamard gate for jth qubit

is [6]

Hj ¼
1ffiffiffi
2

p 1 1

1 �1

� �
ð28Þ

and when applied on all three qubits, it is of the form

H ¼ H1 � H2 � H3

¼ 1ffiffiffi
2

p 1 1

1 �1

� �
� 1ffiffiffi

2
p 1 1

1 �1

� �

� 1ffiffiffi
2

p 1 1

1 �1

� �
: ð29Þ

The Hadamard gate on all qubits, applied on a pseudo-

pure state, creates an uniform superposition of all pos-

sible states,
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jw1i ¼ H j000i

¼ 1

2
ffiffiffi
2

p

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

�

1

0

0

0

0

0

0

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼ 1

2
ffiffiffi
2

p

1

1

1

1

1

1

1

1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð30Þ

H gate is realized experimentally by the pulse sequence

ðp=2Þ�yðpÞx (hard pulses, applied on all qubits). Grover�s
iteration starts from this point by the application of

�conditional sign-flip.� In the �conditional sign-flip� step,
the state which is being searched is inverted; that is a

phase-shift of / ¼ p is introduced in that particular

state. This can be achieved by a conditional phase-shift

gate with / ¼ p corresponding to that state. For ex-
ample, for the search of j110i state, the conditional
sign-flip is the conditional phase-shift gate C110ðpÞ. The
same logic holds for searches of other states.

The second step of Grover�s iteration is �inversion
about average,� in which all the states are inverted about
their average amplitude. The unitary operator (K) of this
step for a three-qubit system is of the form [5]

K ¼ 1
4

�3 1 1 1 1 1 1 1

1 �3 1 1 1 1 1 1

1 1 �3 1 1 1 1 1

1 1 1 �3 1 1 1 1

1 1 1 1 �3 1 1 1

1 1 1 1 1 �3 1 1

1 1 1 1 1 1 �3 1

1 1 1 1 1 1 1 �3

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð31Þ
This step can be realized by applying a Hadamard gate

�H� (on all qubits) before and after a conditional phase-
shift C000ðpÞ gate, hence K ¼ HC000ðpÞH [5,13]. It may be
noted that the C000ðpÞ gate is required because we star-
ted with j000i pseudo-pure state, whereas if one starts
with another pseudo-pure state, say j001i, then the
corresponding phase-shift gate C001ðpÞ will be required.
After one full Grover�s iteration (starting from j000i
pseudo-pure state and searching for j110i state), the
state of the system is

jw2i ¼ ðKÞðC110ðpÞÞjw1i

¼ ðHC000ðpÞHÞðC110ðpÞÞjw1i ¼
1

4
ffiffiffi
2

p

1

1

1

1

1
1

5

1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð32Þ

After the second Grover�s iteration (conditional sign-flip
and inversion about average), we find the final state to

be

jw3i ¼ ½KC110ðpÞ
jw2i ¼ ½KC110ðpÞ
½KC110ðpÞ
jw1i

¼ ½HC000ðpÞHC110ðpÞ
2H j000i

¼ 1

8
ffiffiffi
2

p

�1
�1
�1
�1
�1
�1
11

�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð33Þ

The result of measurement on the final state will give the

searched state j110i with high probability. The entire
sequence for two iterations after pseudo-pure state is

HC000ðpÞHC110ðpÞHC000ðpÞHC110ðpÞH . The pulse se-

quence for the required phase-shift gates C110 and C000
are as in Eqs. (16) and (17), which use transition selec-

tive pulses. This demonstrates that the Grover�s search
algorithm can be implemented using transition selective

pulses complementing the coupling evolution method

proposed earlier [15]. Fig. 1 shows the density matrices

of the system at (a) initial pseudo-pure state, followed by

(b) state of uniform superposition (Eq. (30)), (c) after

conditional sign-flip, (d) inversion about average (Eq.

(32)), (e) after conditional sign-flip of second iteration,

and (f) after inversion about average of second iteration
which is the final result (Eq. (33)). The searched state is

clearly identified in Fig. 1f.

3.2. Quantum Fourier transform

Just as classical Fourier transform extracts periodic-

ity in functions, quantum Fourier transform (QFT) ex-

tracts periodicity of wave functions. It is defined as
follows:

QFTqjxi ¼
1ffiffiffi
q

p
Xq�1
x0¼0

e2pixx
0=qjx0i; ð34Þ

where q ¼ 2n is the dimension of Hilbert space for a n-

qubit system. If f ðxÞ is periodic with periodicity r, then

50 R. Das et al. / Journal of Magnetic Resonance 159 (2002) 46–54



the corresponding quantum Fourier transformed func-

tion f ðpÞ will give a peak at p ¼ q=r. The quantum cir-

cuit for three-qubit QFT [8] is given in Fig. 2.

Quantum Fourier transform has been demonstrated

using J-coupling evolution by Weinstein et al. [16]. Here,

we demonstrate quantum Fourier transform using

transition selective pulses. From quantum circuit, Fig. 2,

one can infer the QFT gate sequence in three-qubit
system as

QFT8 ¼ SWAP13H3C�11ðp=2ÞH2C1�1ðp=4ÞC11�ðp=2ÞH1:
ð35Þ

Hj is the Hadamard gate operated on jth qubit. Here the
operation are applied in the sequence from right to left

such that the SWAP13 is the last operation. The pulse

sequence of C11�; C1�1, and C�11 gates are given in Eqs.

(24)–(26). The SWAP13 gate performs a swap between
qubits 1 and 3, and is realized by a cascade of transition

selective p pulses [12].

SWAP13 : ½ðpÞ00xðpÞx00ðpÞ00x
½ðpÞ11xðpÞx11ðpÞ11x
: ð36Þ

It may be noted that in Eq. (36) the first set of three

pulses taken together commute with the last set of three

pulses taken together, and can be applied in any order.

QFT sequence will extract the periodicity of an input

state of any periodicity r. We demonstrate QFT for two

different inputs. First input has state periodicity r ¼ 4,
and is created by a ðp=2Þy qubit selective hard pulse on
the first qubit, Fig. 3a. The output state obtained by
applying sequence of Eq. (35) shows a periodicity of

q=r ¼ 23=4 ¼ 2, as is evident from the density matrix of
output state, shown in Fig. 3b. The second input state

has periodicity 2, and is created by a ðp=2Þy qubit se-
lective hard pulse on the first and second qubits, Fig. 3c.

The output state obtained by applying sequence of Eq.

(35), has expected periodicity of q=r ¼ 4 as shown in
Fig. 3d.

4. Experiments

Grover�s two-qubit search has also been carried out
experimentally using transition selective pulses on a

two-qubit system formed by the carbon-13 and proton

of the molecule 13CHCl3. Experiment have been per-

formed at room temperature in DRX 500 spectrome-

ter. The coherence times were; T1¼ 20 s and T2¼ 0.4 s
for the proton, T1¼ 21 s and T2¼ 0.3 s for the carbon.
The proton resonance frequency on the DRX 500MHz
spectrometer is 500.13MHz, and that of carbon-13 is

125.76MHz. The spin–spin (J) coupling in this system

is 209Hz. Gaussian shaped pulses of duration 20ms

were used as transition selective pulses. The initial

pseudo-pure state were also prepared using transition

selective pulses. A pulse sequence [ð70:5�Þx1ð90�Þ1x�
grad] equalizes the populations of the states j01i, j10i,
and j11i, keeping the population of j00i state undis-
turbed, different from the equalized population of

other states; hence establishing j00i pseudo-pure state
[22,30]. An inhomogeneous magnetic field gradient

pulse along z-direction destroys any created coherence.

This state is shown in Fig. 4a.

Fig. 1. Implementation of three-qubit Grover�s search algorithm is

shown by simulations. The state j110i is searched. The density matrices
at different stages of the algorithm are shown. (a) Pseudopure j000i
state, (b) uniform superposition, (c) conditional sign-flip, (d) inversion

about average, (e) conditional sign-flip of second iteration, and (f) in-

version about average of the second iteration. The high probablity of

j110i state is reflected in the final densitymatrix. The x- and y-axis labels

correspond to different states as: 0! j000i; 1! j001i; 2! j010i;
3! j011i; 4! j100i; 5! j101i; 6! j110i, and 7! j111i.

Fig. 2. Efficient quantum circuit for quantum Fourier transform in a

three-qubit system. x00; x01, and x02 are states of the three-qubits in the
input, and, x0; x1, and x2 are the corresponding states in the output.
The last operation is a swap gate between qubits 1 and 3. The unitary

transformation Rk is the phase-gate Rk ¼
1 0

0 e2pi=2
k

� �
:
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Grover�s algorithm for two-qubit system requires

only one iteration. The gate sequence (after pseudo-pure
state) for two-qubit search is HCijðpÞHC00ðpÞH , where
ij ¼ 00, 01, 10, and 11 for searching the states j00i, j01i,
j10i, and j11i, respectively. The first Hadamard H gate

is applied to create uniform superposition state, the Cij

phase gate is for �conditional sign-flip step,� and
HC00ðpÞH performs the �inversion about average.� The
pulse sequence used for different Cij phase gates are as in

Eqs. (10)–(13). Each Cij requires three z-pulses. The first
two z-pulses are to be applied on both the transitions of

first qubit, hence making it a qubit selective z-rotation

ð/=2Þz0ð/=2Þz1 ¼ ð/=2Þð1Þz ; ð37Þ
where the superscript shows that it is a z-rotation of

qubit 1. The large Larmor frequency difference between
two qubits (13C and 1H) allows one to achieve the first

two z-pulses by qubit selective hard pulses on the first

qubit. For example, in the case of C11ð/Þ gate
½ð/=2Þz0
½ð/=2Þz1
 ¼ ½ðp=2Þy0ð/Þx0ðp=2Þð�yÞ0


� ½ðp=2Þy1ð/Þx1ðp=2Þð�yÞ1


¼ ðp=2Þð1Þy ð/Þð1Þx ðp=2Þð1Þð�yÞ: ð38Þ

The third z-pulse /1z was achieved by three transition
selective pulses on a transition of the second qubit, as in

case of C11ð/Þ, ð/Þ1z ¼ ðp=2Þ1yð/Þ1xðp=2Þ1ð�yÞ. Hence,

each conditional phase-shift gate required three-qubit

selective and three-transition selective pulses.

We have experimentally determined the search of all

the states j00i, j01i, j10i, and j11i in four different
experiments, the results being shown in Fig. 4.

The pseudo-pure state and the final states were to-

mographed by efficient quantum state tomography us-

ing two-dimensional Fourier transform technique

[21,35]. The diagonal elements were measured using a

one-dimensional experiment. In this experiment, all off-

diagonal elements were dephased by a gradient pulse

along the z-direction, and then a small angle ð15�Þ pulse
was used for detection. The detected signal yielded all

the diagonal elements. The off-diagonal elements were

measured using a two-dimensional experiment. Here,

the density matrix was allowed to evolve for a time t1,
then a ð90�Þ hard pulse (on all qubits) transforms every
element of density matrix into all other elements in-

cluding diagonal elements. A gradient pulse retains only

diagonal elements, and a ð45�Þ hard pulse (on all qubits)
is applied and the signal is detected as a function of time

t2. The detected signal is Fourier transformed with re-
spect to t1 and t2, yielding a two-dimensional frequency
domain spectrum Sðx1;x2Þ. The intensities of various
peaks in Sðx1;x2Þ yields all the off-diagonal elements of
the initial density matrix. The above procedure of

measuring off-diagonal elements requires ideal ð90�Þ and
ð45�Þ pulse. Therefore, we also performed another one-
dimensional experiment without applying any pulses,

which allows us to directly measure the single quantum

elements of the initial density matrix. These intensities

Fig. 3. Quantum Fourier transform in three-qubits is shown by simulations. The dimension of the Hilbert�s space of the system is 8. (a) and (c) are
two different input states with periodicity (r) 4 and 2, respectively. The density matrices of the corresponding output states (b) and (d), show pe-

riodicities (q=r) as 2 and 4, respectively. This shows QFT extracted the periodicity of the input state. The x- and y-axis labels correspond to different

states as: 0! j000i; 1! j001i; 2! j010i; 3! j011i; 4! j100i; 5! j101i; 6! j110i, and 7! j111i.
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were compared with the single quantum elements mea-

sured by the two-dimensional experiment and were used

to normalize the remaining off-diagonal elements. The

errors in the diagonal elements were less than 5%. The

errors in the off-diagonal elements were less than 15%.

The errors are mainly due to errors in long low power

r.f. pulses (transition selective), during which relaxation

and evolution adds to the errors. However, the errors in
the present experiment are comparable to those per-

formed earlier using J-evolution [13].

5. Conclusion

In this work, we suggest transition selective pulses as

candidate for implementation of phase-shift gates for

quantum information processing. The implementation

of unitary operators by J-evolution requires refocusing

pulse schemes for removal of evolution under chemical

shifts and unwanted couplings [23]. The use of transition

selective pulses do not need such pulse schemes. The
search of more qubits has led researchers to use mole-

cules oriented in liquid crystalline matrices as computers

[24,25,28,29]. In these systems, one often encounters

spins which are strongly coupled, and in such cases

evolution under J-coupling or dipolar coupling becomes

too complex for quantum information processing [32].

The use of transition selective pulses for quantum in-

formation processing is especially useful in such systems
[30]. The use of low power, long duration r.f. pulses,

gives rise to experimental errors due to relaxation and

unwanted evolution under the internal Hamiltonian

during long pulses. The experimental error may be re-

duced by using strongly modulating selective pulses of

shorter duration, developed recently [36].
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